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Abstract

In a digital world dominated by data, where vast amounts of data
is collected about individuals each day, privacy is becoming an ever
growing concern. With the introduction of wearable fitness trackers and
smartwatches and their growing popularity, potentially sensitive health-
related data is now also being collected about individuals, which further
emphasises the need for privacy.

Common privacy-preserving actions today usually involves an-
onymisation of personal data, to prevent the person from being identifi-
able in a dataset, should it be sold, shared or otherwise published. Privacy
regulations are in place, and in the process of improving, such as with the
introduction of the EU General Data Protection Regulation (GDPR) being
recently introduced in 2018 [1]. However, as we will see in this thesis, these
efforts to protect privacy may not be sufficient.

With deep learning technology blurring the lines between identifiable
and non-identifiable personal data due to its tremendous learning capabil-
ities and ability to recognise patterns and correlations between data, there
are concerns that current data anonymisation processes are no longer suf-
ficient to protect a person’s privacy. To test this theory, we will apply deep
learning to an anonymised Fitbit dataset in an attempt to reidentify the
participants within the dataset. In this thesis, we will be implementing a
Siamese neural network architecture as a solution to this problem.
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Chapter 1

Introduction

We are currently living in a digital age dominated by data. Data plays a
huge role in business these days. With data comes valuable insight into
your business, allowing you to understand recent trends and find ways to
improve.

Data has always been a big part of business, even before the digital
age we now live in. There are several ways data was collected and stored
before the digitalisation. Businesses would store logs of shipments and
sales etc. When businesses moved into the digital world, data collection
and storage became much easier and more efficient. It also became possible
to collect new types of data such as website traffic, both for the website
as a whole and for specific pages on the site. With this data, you might
better understand what areas of the website are more popular, which in
turn tells you what is more worth investing resources into. It was not long
until businesses also realised they could collect data about the individual
customer as well. Moreover, this data proved to be particularly valuable.

Take, for example, a marketplace like Amazon. They can collect data
on what items a customer purchases, what they items they browse, what
reviews they give etc. With this data they can use algorithms to predict
what items the customer might be interested in, and present these to the
customer, increasing the likelihood that the customer will spend money
and that they will have a more pleasant experience with the website. The
more data you had on a particular customer, the more accurately your
algorithms could predict their interests, and it is for this reason that data
itself soon became attractive merchandise to be bought and sold between
different companies, in order to learn more about their customers.

Whenever you browse online, you leave behind a digital trail of data,
commonly referred to as a "digital footprint". This data is collected and
processed either by the website itself or by third-party data analytics
companies in order to learn more about you so they can tailor their
services to better suit your needs. These companies would also sell this
data for profit, as well as purchase your data from other companies in
order to increase the quality and quantity of the data they possess. The
collection and processing of customer data is nothing new, however. That
is something we have seen since the early days of the digital age.
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In more recent years, wrist-worn sensors such as smartwatches, Fitbits
etc. have become increasingly popular. This is yet another source of
valuable data to be profited from. These devices collect data about a
person’s physical fitness and health data, which will allow you to learn
even more about them and thus allow for more accurate predictions.
Fitness and health data could be beneficial to an insurance company, for
example. If they had access to such data, they could use it to adjust
insurance premiums depending on the customer’s health conditions.
This thesis will focus on these devices and their related applications.
Specifically, Fitbit will be the main focus.

1.1 Motivation

Some of the data collected by these wearable activity trackers can be
considered especially sensitive since they are related to the wearer’s
physical health. Having sensitive data about you collected and potentially
sold or shared naturally raises some concerns regarding privacy.

Is the data anonymised in the event of being sold or shared? How well
is it anonymised, and is it possible for the data to retain its anonymity
when aggregated with other data? If the data is not properly anonymised,
it could infringe upon a person’s right to privacy. If sensitive personal
information such as the data collected by fitness trackers ends up in the
wrong hands could be used for profiling an individual, which can be
considered invasive to their privacy.

How well is the data protected? Fitness applications are notorious
for having data breaches or leaks. In 2018 alone there were several data
breaches in fitness applications which compromised the data of millions
of users. There was the global activity heatmap released by Strava
which revealed secret military bases [2]. A similar incident happened
later the same year when data leaked from the Polar fitness application
compromised the location and activity of soldiers and secret agents [3]. 150
million users were compromised in the rather large data breach involving
MyFitnessPal [4], whose leaked data is on the dark web for sale today [5].
PumpUp also had a data breach which even compromised user private
messages [6]. Garmin has also had some privacy and security issues fairly
recently. They had a major privacy breach in September 2019 where hackers
stole payment data from the Garmin South African shopping portal [7].
They were also hit by a ransomware attack in July 2020 which forced them
to shut down all their services worldwide, which took them several days
to recover from [8]. The fact that we so frequently see significant data
breaches involving fitness applications implies the security and/or data
management of these applications is insufficient.

Deep learning is often applied in data analysis due to its ability to learn
about data and make accurate predictions based off of what it has learnt.
Deep learning consists of artificial neural networks, which are capable of
learning similarly to the way the human brain learns. This, combined with
the ever-increasing computational power from new technology, allows

2



for much greater efficiency in learning about specific problems such as
analysing a specific type of data than we humans are capable of. In
other terms, by applying such technology, we are able to learn more about
data, than we would have been able to otherwise. This also leads to
better predictions in for example health risks [9], traffic flow [10], stock
markets [11] or even human behavior [12]. As we can learn more about
individuals by applying deep learning technology in data analysis, the
need for privacy is becoming more apparent.

The recent trend and rising awareness surrounding digital privacy have
resulted in improved regulations regarding the processing of personal data,
such as the EU General Data Protection Regulation (GDPR) [1], in an effort
to preserve our privacy. The GDPR grants rights to the data subject [13]
and restricts the processing of special categories of personal data such as
religion, racial or ethnic origin, biometric identification data, health data
etc. [14]. To comply with these regulations, personal data will usually
be anonymised before being sold or shared. However, the ever-evolving
deep learning technology raises some concerns regarding personal data
and anonymisation. Is it possible that anonymised data can be reidentified
with deep learning technology? Consider, for example, a fitness dataset
from Fitbit, Garmin, Polar or similar services. These datasets will usually
include physical data for physical activity, sleep, heart rate and perhaps
even food consumption or GPS coordinates. Deep learning could be used
to learn a lot about a person, including their activity pattern, sleep pattern
and more by analysing this type of data. This information could also
be used for profiling, which once again emphasises the need for proper
anonymisation.

1.2 Problem Statement

When data is anonymised, this is usually done by removing ’identifiers’
from the dataset. These identifiers are data directly connected to a person’s
identity, such as name, country, date of birth, phone number, email etc.
As we covered in the problem statement, with deep learning being more
widely used, especially for analysing data (both personal and otherwise),
it raises the concern that this anonymisation process may no longer be
sufficient to protect privacy.

In light of this, we have chosen to look into the possibility of using
deep learning to reidentify individuals in an anonymised fitness dataset.
We have two main research questions we aim to answer, and they are as
follows:

Question 1 Could a chunk (for example a day or a week) of deidentified
physical activity data be considered a biometric identifier?

If it is possible to find patterns in physical activity data, which is unique
enough for a deep learning algorithm to distinguish between persons based
solely on this data, it would be considered a biometric identifier.
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Question 2 Is it possible to use deep learning in order to reidentify
individuals in a dataset that has been previously anonymised?

This would involve being able to distinguish between participants in an
anonymous dataset based on pattens in their data, for example, by treating
the data as a biometric identifier, as stated above.

We aim to answer these questions through our main objective:

Objective Implement a deep learning neural network architecture to
reidentify individuals in an anonymised fitness dataset.

1.3 Scope and Limitations

Based on the objective mentioned in our problem statement, the scope for
this thesis will be implementing a Siamese Neural Network architecture to
reidentify participants of an anonymised Fitbit dataset.

We will be limiting ourselves to a single dataset, called PMData [15],
which we will describe in chapter 3. Thus, we will also be limiting
ourselves to data collected by the Fitbit Versa 2 [16], as this was the
device used for data collection in PMData [15]. Furthermore, although
reidentification of data can be achieved through other architectures as
well, we will be limiting ourselves to a Siamese architecture, as this has
proven effective in comparison-based identification problems which we
will explore in chapter 2. With this, we will be able to observe whether
fitness data can be used as a sort of biometric identifier as we will be
implementing the Siamese architecture in a similar fashion to how it would
be used for facial recognition. Within this dataset, we will also be limiting
ourselves to only testing data for steps and heart rate, as we had to
prioritise due to time constraints.

1.4 Research Methods

In this thesis, we use an iterative experiment-based approach to designing
and implementing a solution for the problem of reidentifying individuals
in an anonymised dataset. We implementing an existing architecture for
solving similar problems and modify this to suit our purpose. Then,
we will go through several iterations where we conduct reidentification
experiments, assess the results and implement improvements accordingly.

1.5 Main Contributions

Over the course of this thesis, we have researched and implemented a
Siamese neural network architecture which is capable of reidentifying
participants in an anonymised dataset. It works similarly to facial
recognition by taking two chunks of data and computing a similarity score
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between them. This similarity score is then used to determine whether the
two chunks of data comes from the same person or not.

Our final implementation uses heart rate data for comparison and
achieves reidentification of participants in the dataset we used with an
accuracy of up to 77.4%. We can, therefore, conclude that there is a good
potential for reidentifying anonymised physical activity data by using deep
learning to compare chunks of data. This approach is limited, however, in
that it requires you to have one or more, already identified, chunks of data
from the person you wish to identify in a dataset, which the Siamese neural
network can use for comparison.

With our main objective achieved, we can answer the research questions
from our initial problem statement:

Question 1 Could a chunk (for example a day or a week) of deidentified physical
activity data be considered a biometric identifier?

Our implemented Siamese neural network is capable of distinguishing
between anonymous participants in a dataset by computing the similarities
between their data. It does this by taking two chunks of heart rate data as
input, where a chunk is a day of beats-per-minute (bpm) values. These
chunks are sent through identical neural networks to generate feature
vectors for them. The absolute distance between these feature vectors is
then used to calculate a similarity score, which can be used to determine
how similar these chunks of data are. The hypothesis is that if two chunks
of data compute similar features in the neural networks, the chunks are
likely to belong to the same person due to having similar patterns.

This gives reason to believe that physical activity data can be used as a
biometric identifier, as it can be used to identify a person in an anonymous
dataset. An obvious limitation to this, however, is that humans change
over time, and so does their activity patterns, meaning the Siamese neural
network may not be able to reidentify individuals if the chunks of data
to be compared are far apart in terms of when it was collected. Another
limitation is that you need to already possess one or more chunks of data
from the person you wish to identify, as you need something to compare to
the chunks in the anonymised dataset.

Question 2 Is it possible to use deep learning in order to reidentify individuals
in a dataset that has been previously anonymised?

As mentioned, our implementation was able to reidentify participants
of a dataset with an accuracy of 77.4%, which proves that this is indeed
possible. It is based on the theory that since humans are habitual creatures,
their behaviour will likely have some sort of pattern, which would be
reflected in their physical activity data. In such a case, one should be able to
distinguish between individuals based on patterns found in their physical
activity data. If these patterns are unique enough, they could be used as a
form of biometric identifier which could allow a deep learning algorithm
to identify an individual based on their physical activity data.
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Objective Implement a deep learning neural network architecture to reidentify
individuals in an anonymised fitness dataset.

Our implementation of a Siamese neural network takes two chunks of
data as input, compares these and computes a similarity score based on
the absolute distance between their features. A high similarity score means
the patterns in each chunk is similar and is therefore interpreted as the
two chunks belonging to the same person. With reaching accuracies up
to 77.4% in testing, we can conclude that the implementation is capable of
reasonably reidentifying anonymised data, as long as you have available
data from the person you wish to identify, for comparison. The source code
for this implementation can be found on GitHub here: https://github.com/
Zeykes/Fitbit_Reidentification

1.6 Thesis Outline

This thesis is split into four chapters. The first is an introduction, followed
by background research on the topics of fitness trackers, privacy and deep
learning. The third chapter details our own research and experimentation
process in chronological order, and the final chapter concludes the thesis,
where we summarise our experiments and present future work. Below is a
summary of what each chapter entails, excluding chapter 1.

Chapter 2: Background In this chapter, we present background research
and works relevant to this thesis. This chapter is split into four parts; fitness
trackers, relevant works using Fitbit, research on privacy and fitness data,
and a summary at the end.

The first part briefly goes into the history of fitness trackers, including
their origin and rise to popularity, as well as the state of fitness trackers
today. As our thesis explores privacy concerns in fitness data through
reidentification of anonymous datasets, this section provides context to
means in which fitness data is collected.

The second part explores related works on Fitbit devices and data,
which has relevance for our thesis because we will be using Fitbit in the
data collection process for the thesis itself. This section gives context
regarding the accuracy of the data collected through Fitbit devices, as well
as security and privacy surrounding these devices.

The third part will explore privacy, where we look into how data is
generally anonymised, and why this process is important. Furthermore, we
go into detail on what potentially sensitive information can be indirectly
obtained through analysing fitness data, and how this may be a cause to
view fitness data itself as sensitive, further emphasising the necessity of
privacy regarding such data.

Finally, we will summarise the chapter, highlighting the important
takeaways and their relevance for our thesis.

Chapter 3: Experiments and Results In this chapter, we detail our
experimentation process in chronological order. We test and improve
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our Siamese neural network implementation iteratively, going through the
following steps, in order:

Experiments. Here we conduct experiments using the current imple-
mentation, observe and assess the results, leading into the next experiment.

Reflections. Here, we summarise a batch of experiments, discuss the
results, and lead into which improvements should be made, either to the
model implementation or to the experimentation method itself.

Improvements. Here, we make improvements based on our reflection of
the previous batch of experiments. These improvements may be for the
implementation, or for the experimentation method if we find it necessary.
The next batch of experiments will be conducted after these improvements
have been implemented.

Chapter 4: Conclusion In this chapter, we summarise our experimenta-
tion process and present our results and conclusions. We also reiterate our
main contributions once more, and present future work we believe to be
the natural next step for the work done in this thesis.

7
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Chapter 2

Background

2.1 History of Fitness Trackers

In this section, we will study how fitness trackers have evolved to be as we
know them today.

2.1.1 Origin and Evolution

To find the origin of fitness trackers, one must first determine what the
definition of a fitness tracker is. When people talk about fitness trackers
today, they are most likely referring to wearable digital devices that include
features such as a clock, step counter, heart rate monitor and more.
However, this is only the modern definition. These features have been
around for much longer as stand-alone devices.

The first pedometer was created as early as 1780 by Abraham-Louis
Perrelet [17]. The first wearable pedometer was created in 1965 and
was called "Manpo-Kei" which translates from Japanese to "10,000-step
meter" [18]. This came along with the notion that 10,000 steps daily was
the optimal amount, although this did not have much scientific basis at the
time [19].

The first wearable heart rate monitor was invented in 1977 by the
Finnish professor Seppo Säynäjäkangas, who later went on to found Polar
Electro. Polar Electro began selling wireless personal heart rate monitors in
retail in 1983 [20].

Polar would go on to improve wearable fitness technology and
eventually create fitness trackers that included both pedometer, heart rate
monitor functionality and more in the late 1990s / early 2000s. These were
the early models of the fitness trackers we know today. Garmin later joined
them in 2003 [21], and Fitbit in 2007 [22], which further pushed the tracker
technology forward.

Smartwatches were yet another type of wrist-worn technology that
emerged around 2012 with the introduction of the Sony SmartWatch [23].
Large mobile/electronics companies such as Samsung, Apple and many
others would also make their own smartwatches shortly after, contributing
to further growth in this market [24]. These smartwatches would also
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incorporate fitness tracking functions such as step count and heart rate
monitoring, effectively combining with the fitness tracker technology.
Naturally, fitness tracker manufacturers like Polar, Fitbit and Garmin
would soon also develop their own smartwatches to join this trend [25–
27]. Today, smartwatch and fitness tracker technology have merged to the
point where the line between them has become blurred.

2.1.2 Rise to Popularity

It was not long after smartphones became commonplace that people
gained interest in moving smart-technology to wearable devices. Although
wearable fitness trackers have been around for quite some time, as we saw
in section 2.1.1, they did not gain much popularity amongst consumers
until around 2013-2014. Fitbit was the company dominating the market
of fitness wearables in 2014, with companies such as Samsung, Garmin
and Jawbone also making their presence known [28]. In the following
years, Apple, Xiaomi and later Huawei have also come on board, with
Apple dominating the market in recent years [29]. The overall market for
wearables has also grown significantly during this time, is estimated to
reach as much as USD 91.98 billion by 2027 [30].

2.1.3 Manufacturers Today

The largest manufacturers of fitness trackers today, going by their market
share, are Apple, Xiaomi, Huawei, Samsung and Fitbit [28]. Other
manufacturers such as Garmin, Polar, Lifesense and others are still in the
market, although to a lesser extent. Fitbit has especially dropped in recent
years, from being the largest manufacturer in the past to holding just a
fraction of the market share today. Jawbone was very relevant in the earlier
years of fitness trackers but has since gone out of business in 2017 [31].

2.1.4 Fitbit Acquired by Google

Google announced its intent to buy Fitbit for USD 2.1 billion in November
2019 [32]. Shareholders have since approved the deal in January 2020 [33].
This effectively means Google gets to expand its already vast data empire
with the addition of Fitbit data.

It has already been said how much Google knows about you through
the data collected via their services, and the privacy risks involved. Now
they can potentially gain access to your fitness data as well through Fitbit.

2.2 Related Work - Fitbit

For this thesis, we have chosen Fitbit as our main focus. We chose
Fitbit mainly due to convenience, as we would be participating in a data
collection experiment by Simula, using Fitbit, during the time period of
working on the thesis, and we could use this data for our own experiments.
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In this section, we will look at some relevant research, that is specifically
related to Fitbit.

2.2.1 Accuracy of Data Collected Through Fitbit

Several studies have conducted on whether or not Fitbit devices are capable
of providing accurate and reliable step counts. The first study we looked
at was conducted by having participants wear trackers while walking and
running on a treadmill in set intervals, and comparing the tracker results
with manually observed results [34]. This study concluded that the trackers
are capable of reliably and accurately recording the wearer’s step count
both when running and walking. Another study conducted in similar
conditions yielded similar results. However, this study also measured the
accuracy of the distance measured by the tracker and found this to be very
inaccurate and unreliable [35]. We also looked at a study that tests how the
tracker attributes steps if the wearer is doing activities other than simply
running or walking. These activities include vertical jumping, hopping,
squatting and standing up from a sitting position. This study found that
although the devices are fairly accurate recording steps when running or
walking, they will also incorrectly record steps while performing other
activities [36].

When it comes to the accuracy of sleep patterns recorded by Fitbit
devices, a study published by the Journal of Medical Internet Research
shows that although they might be convenient and good enough for the
average person to gain insight into their sleep quality and patterns, they
are lacking in terms of more specific and in-depth tracking, making them
unfit to be used as a substitute for polysomnographies in medical care [37].

To summarize, while the devices can measure steps while walking or
running accurately, they will incorrectly add extra steps to the counter
during any other activities, making it somewhat unreliable for regular use.
The distance measurement, which is based on step count and stride length
(a set value in settings), is rather inaccurate and should not be trusted [38].
The sleep pattern function is good enough for a consumer to use as gross
estimates; however, it is not accurate enough to be particularly valuable to
medical personnel.

2.2.2 Security and Privacy

Although the security and encryption protocols of the Fitbit ecosystem
has improved over the years, there is still room for improvement, as
shown in [39]. This study explores potential security vulnerabilities in the
device itself, the application, the Fitbit server and the connections between
these. One of their findings is that the device actually logs and sends step
count data of finer granularity than Fitbit provides its user. This suggests
the device collects more data than it informs the user of, which could
potentially be a breach of privacy. Another interesting discovery they made
is how the Fitbit device actually responds to any nearby device with the
same Bluetooth protocol (BTLE), rather than just the device it is paired
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with. By capturing the Bluetooth traffic and analysing the data, you can
figure out the private addresses of nearby devices. Since Fitbit for some
reason opts not to use the privacy-enhancing feature of the BTLE protocol,
which allows developers to change these private addresses frequently to
avoid tracking [40], the private addresses of Fitbit devices remain static.
Furthermore, the Fitbit application collects these addresses discovered
through Bluetooth and reports it to the Fitbit servers which means they
could potentially map out a user’s surroundings based on nearby devices,
which would be a breach of privacy.

2.3 Related Work - Privacy

Having secure devices are important by itself, but the focus of this thesis is
the privacy issues raised by the information in the data itself. Thus, in this
section, we will look at research on privacy that relevant to this thesis.

2.3.1 Anonymisation

Before being sold or shared, user data is often anonymised in some way.
This is done per privacy policies and regulations in order to prevent the
user from being identified by their data. The exact anonymisation process
may vary depending on the data and policies in question. The most
common approach to anonymisation is to remove any identifiers from
the data. This approach is referred to as deidentification. Identifiers
are data linked directly to a person’s identity such as name, email,
telephone number, address, birthday etc. One commonly used standard
for deidentification is the HIPAA (Health Insurance Portability and
Accountability Act) deidentification standard [41]. This standard lists all
identifying data that must be removed in order to deidentify the data.

It has been known for a long time that you only need a few identifiers
in order to directly identify a person. This was proven as early as the
year 2000 when researcher Latanya Sweeney managed to identify 87% of
Americans using only their birth date, zip code and sex [42]. However as
technology develops over the years, especially in the field of data science
and machine learning, there have been more frequent cases of users being
reidentified through ’anonymised’ data as well [43]. An example of such
a case was when researchers Arvind Narayanan and Vitaly Shmatikov
managed to reidentify some of the users in Netflix’ dataset of anonymous
movie ratings (released in 2006), by comparing the data with another non-
anonymised dataset found elsewhere [44]. They showed once again in 2009
how cross-referencing data sets can expose users’ identities, using Flickr
and Twitter [45]. With these examples, we have seen how easily users can
be identified by cross-referencing different data sets. It is only natural to
believe the same can be achieved for anonymous fitness data as well. In
fact, there was a study conducted on exactly this in 2018 [46]. For this
study, they used a scenario where one organisation shared a deidentified
data set containing physical activity data, health data and demographic
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information. They were then able to reidentify this data by using machine
learning to cross-reference the data with a different data set containing
names, demographic information and physical data. This was proven to be
very effective, with a success rate of 67-94% (varying by which algorithm
was used).

There is most likely a significant amount of information that can be
inferred about a person through their fitness data. As Christovich said,
"If computer scientists can predict political leanings, sexual orientation, or
emotional stability based on an individual user’s Facebook likes [47], it is
highly probable that similar inferences can be made from data gathered by
fitness trackers, which measure users’ lives in granular detail" [43, p. 111].

As we have seen, there have already been many cases of anonymised
data being reidentified. It is therefore natural to assume that it should be
possible to reidentify anonymised Fitbit data similarly. If this is indeed
possible, then it may suggest Fitbit’s anonymisation process is insufficient.
As mentioned in the problem statement (section 1.2), we will study the
possibility of reidentifying anonymised Fitbit data, which will allow us to
learn whether the current anonymisation process is sufficient.

2.3.2 Fitness Data Reveals Health Information

Data collected by a fitness tracker can reveal much information about
the wearer. Given how closely fitness and health are tied together,
it would make sense that fitness data could, in addition to providing
information about the wearer’s fitness level, also provide information
about the wearer’s health. This health information may be inferred by
analysing the collected fitness data.

An example of this would be heart rate. There have been several studies
on the usefulness of heart rate as a predictor for various diseases. These
have shown that an elevated heart rate can potentially predict diseases
such as cardiovascular disease and metabolic syndrome, as well as being
associated with insulin resistance, insulin precursor presence and the acute
insulin response [48–52]. With that said, heart rate without context does
not necessarily tell us much on its own. A low resting heart rate could, for
example, imply the wearer is either very athletic or is taking a drug such
as a beta-blocker [53]. If the wearer’s heart rate is very high, it could either
imply they are exercising, or they are suffering from some heart condition.
It is difficult to tell which is actually the case without looking at the context.
Therefore, by looking at the correlation between heart rate and the wearer’s
activity data, one gains further insight as to which case is more likely.

A study conducted in 2017 revealed a strong association between high
heart rate and temperature measurements and elevated hs-CRP (high-
sensitivity C-reactive protein) levels which suggest wearable technology
may contribute to detecting inflammatory responses even earlier than the
wearer/patient by themselves [54]. The same study also suggests that
heart rate recorded by wearable devices may be useful in assisting in the
discovery of other diseases such as cardiovascular disease and metabolic
syndrome as well [54]. Another study conducted earlier this year (2020)
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has also shown potential for predicting influenza-like illnesses by using
machine learning to analyse heart rate and sleep data collected from
wearable fitness trackers [55].

Given how much health information we can obtain by analysing a
wearer’s collected fitness data already, and how this will only increase as
both wearable technology and analytics technology continues to develop,
we may need to start considering fitness data to be as sensitive as
health data in terms of privacy. Furthermore, seeing how many of the
aforementioned disease predictions rely on multiple types of data being
analysed together, it may be a worthwhile privacy measure to separate this
data in the database and obscure the connection between them. We believe
the matter of fitness data sensitivity, and obscuring the connection between
data in the database to be topics worth investing.

2.4 Related Work - Siamese Neural Network

A Siamese neural network is a type of deep learning architecture that uses
two identical convolutional neural networks connected at their output to
compute the similarity between two inputs [56].

Siamese neural networks date back as far as the 1990s where it was
introduced by Bromley et al. in order to verify signatures by looking at their
similarities [56]. It is a type of architecture used to distinguish whether two
entities are similar or not. The name is likely inspired by the fact that the
architecture consists of two identical networks (i.e., twins) that are joined
at their outputs. A Siamese neural network takes two inputs, passes each
through identical neural networks, and finally uses the output from these to
calculate the similarity between the features extracted, by the convolutional
neural networks, from the original inputs.

Siamese neural networks have been applied in a variety of research and
experiments, including facial recognition [57], human reidentification [58,
59], object tracking [60, 61] and symbol recognition [62, 63]. These works
show that Siamese neural networks have been proven quite effective when
it comes to computing similarities between entities, which is why we
believe it is a good choice for our problem of reidentifying fitness data.

2.5 Summary

In this chapter, we have seen how fitness trackers have evolved throughout
the years and gained immense popularity in the last decade. It is a market
that has grown significantly, to the point where it is rather common to
see people around you wearing fitness trackers or smartwatches in your
daily life. This naturally also means there are vast amounts of fitness data
collected from people every day, which is why our problem statement is
relevant, as insufficient anonymisation of data could affect a significant
number of people.

We have also looked into Fitbit in more detail, as this is what
we will use for data collection purposes in our thesis. We looked at
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research on the accuracy of the data collected via Fitbit devices, as well
as research regarding the security and privacy of these devices and the
Fitbit ecosystem. From this, we have learned that Fitbit is reliable when
it comes to step count, but loses accuracy if the wearer is performing
physical activities outside of running or walking, such as jumping, hopping
or squatting. As for the security of the devices, we found a study
that highlighted potential vulnerabilities in Fitbit’s Bluetooth protocol.
Although there are a few issues with Fitbit devices, we will be using a
newer device than what was tested in the aforementioned research. It is
therefore unclear whether these issues still exist, but we believe they will
have little impact on our work.

We covered topics in privacy such as anonymisation, where we looked
at what an anonymisation process entails. We also referred to research
showing that you do not need many identifiers in order to uncover the
identity of individuals in a dataset, which shows us that anonymisation
processes must be thorough in order to be effective. We would be taking
it one step further by using data itself as an identifier, in a dataset that has
been anonymised.

We have covered how there is much more to fitness data than just the
raw data itself, as there is much information to be gained by analysing such
data. This further emphasises the need for privacy in such data and helps
us understand why the possibility of reidentification through deep learning
could be a cause for concern.

Lastly, we looked at Siamese neural networks, briefly how they work,
and what their usage areas are. We have seen that it is quite effective
at solving problems related to identification by recognising similarities
in input data. In the next chapter, we will go through our own
implementation of a Siamese neural network, and the experiments we
have conducted with it in an attempt to reidentify individuals in a fitness
dataset.
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Chapter 3

Experiments and Results

The source code for our implementation of a Siamese Neural Network can
be found in our GitHub repository here: https://github.com/Zeykes/Fitbit_
Reidentification

3.1 Planning

Before we begin implementing a Siamese Neural Network architecture to
tackle the problem statement from section 1.2, we will be studying existing
implementations of Siamese Architectures and use one, or several, of these
as a baseline to build off of. If necessary, we will convert an architecture to
be able to work with our data for our purposes. We will then improve this
implementation through several iterations where we make modifications,
run tests and compare results to find ways of improving until we achieve a
satisfying result.

As mentioned in section 1.3, we will also be testing with two different
sets of data, steps and heart rate. This is to gain insight into how the choice
of data affects the possibilities for reidentifying a participant. Ideally, we
would test a broader range of datasets and types to gain an even better
insight into what data is most suitable for reidentification, but we had to
limit ourselves due to time constraints.

To summarise, in this chapter, we will:

• give a general explanation of Fitbit data, and the dataset we have
used.

• describe the process of preparing the data for machine learning
experiments.

• describe how we implemented a Siamese Neural Network architec-
ture, and converting it to work with Fitbit data.

• iterate over, and improve the implementation.

17

https://github.com/Zeykes/Fitbit_Reidentification
https://github.com/Zeykes/Fitbit_Reidentification


3.2 Fitbit Data

3.2.1 General

Fitbit is a company that aims to promote health and fitness. They achieve
this by developing wearable devices and applications to assist people in
living healthy and getting fit [64]. They also have a means of engaging
with the community in order to help motivate people to a healthier
lifestyle. These include their fitness-related blog [65], a collection of success
stories [66] and their own forum where the community can interact with
each other [67].

3.2.2 Device Used

For testing purposes related to this thesis, we have used the Fitbit Versa
2, which is one of the newest devices from Fitbit at the time of writing.
The Fitbit Versa 2 is a smartwatch meaning it includes more features than
the regular trackers. These features include showing notifications from a
paired smartphone, controlling Spotify on the paired device, as well as
Alexa support with its built-in microphone. Alongside these features, it
also collects various amounts of fitness data, which we will go into detail
on in Section 3.2.3.

3.2.3 Extracting Data

When logged in on the Fitbit website, one can visit their account page and
export their data. This can be done in either of two ways. The first method
is to export a smaller dataset of their activities in the past week or month,
while the other involves requesting all data they have collected for your
account since its creation. Seeing as the former only gives a summary of
activities, weight, food and sleep for in a limited time-frame, we will largely
focus on data obtained via the other method which, assuming Fitbit abides
by article 12 of the GDPR [68], should include all stored data pertaining to
the user. Table 3.2.4 gives a short description of all the files received when
requesting your account data.

3.2.4 PMData: A Sports Logging Dataset

During the period 15 November 2019 - 31 March 2020, we took part
in a data logging experiment named PMData [15] conducted by Simula
Research Laboratory. This logging experiment had 16 participants wear
a Fitbit Versa 2 [16] to monitor their activity and collect data, as well as
responding daily to Google Forms and a questionnaire in the pmSys [69]
app [70]. The goal of PMData was to create a high-quality dataset for use
in research. The dataset is publicly available here: https://datasets.simula.
no/pmdata/.

We decided to use this dataset for our research in this thesis. This is due
to the relevance for the thesis, as well as due to practicality since we also
took part in the data collection process. In table 3.2.4, we briefly explained
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the various data files you can obtain from exporting your Fitbit data. Not
all of these are relevant for our project, as we are only interested in fitness
data since this would provide information we could potentially use to
identify an individual. We chose to focus on steps and heart rate for our
project. Steps can give us information about an individual’s daily activity
patterns. Heart rate, on the other hand, is affected by multiple factors such
as fitness level, age, sex, potential cardiovascular diseases etc. [71–73]. Due
to heart rate being related to such a multitude of factors, we hypothesize
that an individual’s heart rate pattern could be used as an identifier within
a Fitbit dataset. Although we will mainly be using steps and heart rate
from this dataset, we will discuss other relevant data later in section 3.13.
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File Rate of Entries Description

calories.json Per minute. Time series data of calories
burnt.

steps.json Per minute. Time series data of steps
taken.

distance.json Per minute. Time series data of distance
travelled.

sleep.json
When it happens
(usually daily).

Time spent in each sleep
stage (light, deep, REM and
awake), per sleep session.

lightly_
active_minutes.json

Per day. Number of lightly active
minutes per day.

moderately_
active_minutes.json

Per day. Number of moderately act-
ive minutes per day.

very_
active_minutes.json

Per day. Number of very active
minutes per day.

sedemtary_
minutes.json

Per day. Number of sedentary
minutes per day.

heart_rate.json Per 5 seconds. Heartbeats per minute
(bpm) at a given
timestamp.

time_in_heart_rate_
zones.json

Per day. Number of minutes spent
in different heart rate zones
(fat burn, cardio, peak).

resting_
heart_rate.json

Per day. Resting heart rate for the
given day.

exercise.json
When it happens.

100 entries per file.
Detailed data per activity.
Data includes timestamps
for start and stop, a break-
down of time spent in dif-
ferent activity levels, type
of activity, and metrics such
as time, steps, calories etc.

sleep_score.json
When it happens
(usually daily).

Contains a score between
0-100 for each sleep ses-
sion, calculated based on
composition (e.g. data
from sleep.json), duration,
revitalisation, number of
deep sleep minutes, resting
heart rate and restlessness.

Table 3.1: The Fitbit data files from the PMData dataset.
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3.3 Technology

The technologies used for experimentation in this thesis are listed in
table 3.2. TensorFlow will be used for all machine learning related
functionality such as models, layers as well as the functions for training
and using models. NumPy and pandas will be used for data processing
and organisation, while random is used for shuffling input arrays before
training. Lastly, we use pyplot from the matplotlib library to plot learning
curves.

Technology Version Description

Python [74] 3.8 Programming language used.
pip [75] 20.2.3 Package installer for Python. Handles

installing and updating packages.
CUDA Toolkit [76] 10.1 Toolkit by NVIDIA for using the GPU

for compute-heavy work such as ma-
chine learning. Also required by Tensor-
flow to run its machine learning func-
tions on the GPU.

cuDNN [77] 7.6 CUDA Deep Neural Network library,
for optimising and tuning the GPU spe-
cifically for using deep neural networks.

Tensorflow [78] 2.3.1 An open source platform for machine
learning, with the easy-to-use Keras API
to allow for easily building machine
learning solutions.

Numpy [79] 1.18.5 Open source Python package for using
arrays, vectors, matrixes as well as use-
ful numerical computing tools.

Pandas [80] 1.0.5 Open source data analysis and manipu-
lation tool. Allows for using dataframes
to easily manipulate and organise large
datasets.

random [81] - Part of the Python Standard Library. A
package containing various randomisa-
tion functions. We will mainly use this
to shuffle inputs to a machine learning
model.

matplotlib [82] 3.2.2 A library for visualisation and plotting
plotting. We will mainly be using mat-
plotlib.pyplot to plot learning curves.

Table 3.2: Technologies used in this thesis.
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3.4 Siamese Neural Network

For our project, we have implemented and used two different siamese
convolutional neural network architectures [57, 63]. In figure 3.1, we have
illustrated the high-level architecture of a Siamese neural network.

As seen in figure 3.1, a siamese neural network starts by taking
two inputs and passes each through identical neural networks. These
convolutional neural networks will each produce a feature vector, called
h1 and h2 in figure 3.1. It will then compute the absolute distance between
these feature vectors, |h1 − h2|, and calculate a similarity score through
a Sigmoid function using this distance. This similarity score is the final
output of the Siamese neural network, and this value is interpreted as
the similarity between the two inputs. In the context of our problem, we
interpret a score of 0.5 or higher as meaning the two data chunks used as
inputs originate from the same person. If the score is lower than 0.5, the
data chunks belong to different persons.

When Siamese neural networks are used in, for example, facial
recognition, you will usually have a database of identified images, which
you will use for comparison with an unidentified image A, in order to find
a match. A match would then identify image A since it matches with an
already identified image B in the database. A match is considered as a
comparison that achieves a similarity score of above 0.5.

In our case, the order of comparison is reversed. We will have a
deidentified dataset of fitness data, and an identified data chunk A for
comparison. Comparing the identified chunk A to the deidentified dataset
will allow us to identify which anonymous participant in the dataset
corresponds to the same person as chunk A, by assessing which chunks
achieve a similarity score of above 0.5 with chunk A.

This also means we are limited in who we can reidentify in a dataset,
as we require at least one identified chunk of data from that person, on the
same format as those in the dataset, which the Siamese neural network can
use for comparison.

We have implemented two different siamese neural networks over the
course of this project, and we will go into the details of their specific
implementations in sections 3.5.2 and 3.11.

3.5 Steps

3.5.1 Data Processing

Initially, we focused on steps as this dataset would require the least amount
of effort to clean and use. The Fitbit dataset for steps is a time series with
an integer step-value recorded every minute. This data is recorded in a file
called steps.json, as listed in table 3.2.4.

The dataset is somewhat inconsistent as minutes are missing here and
there in the dataset. We made the assumption that if a minute is missing,
there were no steps taken in that minute and thus we would fill in these
missing minutes with 0 as the step-value.
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Figure 3.1: General architecture of a Siamese Neural Network.

After we had filled in the missing data, we created a function to separate
the data into smaller chunks of data, that would be used as inputs for the
Siamese model. Each chunk would contain a week of data for a single
participant. A week is considered all values from Monday 00:00:00 to, and
including Sunday 23:59:00. At 1 value per 1 minute, this amounts to 10080
values per week.

When the data was organized into chunks, we finally removed the
timestamp column, leaving only the step-values themselves as a single
array in chronological order. A single chunk had a length of 10080, which
is the number of minutes in a single week.
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3.5.2 Initial Model

We used a siamese architecture inspired by the facial recognition experi-
ment by Shubham Panchal [57] for our initial experimentation. The inner
architecture for the convolutional neural network part of the Siamese ar-
chitecture (as shown in figure 3.1) is illustrated in figure 3.2 under "Before".
This architecture consists of convolutional 2D layers, max-pooling layers,
a dense layer, and a flatten layer. The convolutional layers create feature
maps from the inputs which are then down-sampled by the max-pooling
layers by highlighting the features that are most present. The result from
this is then flattened (transformed from a feature map to a single dimen-
sion feature vector) via the flatten layer before being sent through a dense
layer. This composition of layers make up the sequential model which cor-
responds to the "Convolutional Neural Network" part of figure 3.1, and the
output of this sequential model corresponds to "feature vector" h1 and h2
of figure 3.1.

The original architecture was designed to take images as input. We
would be using one-dimensional arrays with Fitbit data as input, which
means the architecture in its original state was incompatible with our
purpose. In other words, we would have to modify the model before we
could use it. This was achieved by switching from 2D layers to 1D layers,
and subsequently changing the defined input shape, as well as changing
the kernel size and pool size of the layers to one dimension. Figure 3.2
shows the sequential model before and after modification. With that, we
were able to make the siamese model compile and train on Fitbit data
successfully.

3.6 Experimentation - Phase One

3.6.1 Arranging the Input

Before we could train the model with data, we had to organize the inputs
for the model’s fit() function. We did so by creating three arrays: input_1,
input_2 and labels. The first two arrays would be the chunks of step-data
coming from the function mentioned in section 3.5.1, arranged in such a
way that each chunk gets compared with all chunks in the set. In other
words, if we have N chunks of data in total (for all participants combined),
the two inputs would each be of size N2. As an example, if we had three
chunks in total (N=3), from the function mentioned in section 3.5.1 and
name them c1, c2 and c3, the input arrays would be:

input_1 c1 c1 c1 c2 c2 c2 c3 c3 c3
input_2 c1 c2 c3 c1 c2 c3 c1 c2 c3

labels 1 0 0 0 1 0 0 0 1

Table 3.3: Example of what the input arrays looks like.

The labels array contained ground truths (0 or 1) on whether each of
the comparisons between input_1 and input_2 are true negatives (0) or
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Figure 3.2: Comparison of the Convolutional Neural Network of initial
model before and after our modification. This is the inner architecture
of the box labeled "Convolutional Neural Network" in the Siamese
architecture in figure 3.1.

true positives (1). For example, if the first chunk in input_1 comes from
participant A, and the chunk in the same position of input_2 also comes
from participant A, then the ground truth at that position in the labels
array would be 1; otherwise, it would be 0.

3.6.2 Initial Test

With the inputs organized and ready, we began the first experiment. It
was conducted with a minimal part of the dataset as its main purpose
was to confirm that the model would compile and train successfully with
the given inputs. This experiment was conducted using 3 weeks of data
from 2 participants. Although the code was able to run without issues, the
results were not so good with the model’s loss value remaining unchanged
during the training process. This would suggest that the model did not
learn much.

We tested the resulting model with another 3 weeks of data from each
participant. These were 3 weeks of data not used in training. The test was
conducted by using the model’s predict() function in order to predict
whether two chunks of data originated from the same participant or not.
Every single test resulted in the same similarity score of around ~0.50. This
confirms the aforementioned suspicion that the model did not learn much,
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as these scores suggest the model is guessing based on probability. Since
there were only two participants involved, there was a 50% chance that
either is the correct answer, which is why the model would produce around
0.50 similarity score between any two chunks.

3.6.3 Improving Testing Conditions

At this point, in order to make the experimentation process more efficient,
we improved the code for processing data into chunks and arranging
the inputs, by creating functions for these. The functions would take
as parameters the number of weeks and participants to be used, thus
minimising the work required to perform experiments with varying sizes
of data.

3.6.4 Experimenting with Different Data Sizes

We then used this new function to run multiple experiments with different
parameters for the number of weeks and parameters. These experiments
showed positive improvements in the sense that the model was now
actually learning something when we increased the amount of data used
for training. However, the predictions remained highly inaccurate.

3.6.5 A New Approach to Input Arrangement

A different approach to inputs was also tried. The old approach arranged
chunks in the arrays input_1 and input_2 such that each chunk was
compared with every chunk in the set, thus meaning input_1 and input_2
were each of length N2. The new approach would instead create two
identical input lists, then randomly shuffle them, keeping the lists as length
N. This means every chunk would be compared to a single, random other
chunk. This method would make input_1 and input_2 each be of length
N instead. Before shuffling, each chunk in the arrays would be turned into
a tuple which included a participant ID in addition to the chunk to ensure
the ground truths in the labels array would be correctly attributed. After
the inputs were shuffled and the labels array created, the participant IDs
were removed again, and all inputs were converted to arrays for training.
This approach did not see much improvement over the old one besides
a slightly improved execution time, as arrays of length N (new version)
naturally compute faster than arrays of length N2 (old version).

3.6.6 Balancing the Dataset

We hypothesised that one of the causes for the model’s poor performance
might be due to the data used for training being imbalanced, as this has
been an issue in other machine learning applications such as [83]. If we
consider the following:

• N is the total number of chunks (for all participants combined).
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• P is the number of participants from which we have data-chunks.

• X is the number of chunks per participant, in other words N
P .

With our original input method, there would be N comparisons made for
every single chunk. Out of these, only X comparisons would be a true
positive as there are only X chunks from the same participant. In such a
case, if there were 16 participants there would be 15 true negatives for each
true positive comparison, leading to an imbalanced training dataset. When
the data is imbalanced in such a way, it significantly lowers the probability
that a random prediction between two chunks is a true positive due to it
being perceived as statistically unlikely. This would, in turn, incentivise
the model to predict low scores (i.e., predict comparisons as non-similar)
simply because it has a high probability of being correct.

To solve the issue of data imbalance, we implemented yet another
approach to creating the inputs for the model. In this approach, we split up
the chunk-matching process into several steps. For each chunk C prepared
by the function in section 3.5.1, the following actions are performed:

1. Create temporary lists same and not_same.

2. Iterate through the list of chunks, storing those having the same
participant as C in same, and those from other participants in
not_same.

3. Shuffle same and not_same, then use slicing to cut not_same into
being the same length as same.

4. Concatenate same and not_same into a single list to_add, and shuffle
it.

5. Append the to_add list to input_2 and append the value C to input_1
n times, where n is the length of to_add.

This approach ensures we have an equal amount of true positives and true
negatives in the training dataset. In other words, the training dataset will
now be balanced. Using the same example as previously, if we have three
chunks in total (N=3), from the function mentioned in section 3.5.1 and
name them c1, c2 and c3, the input arrays would now be:

input_1 c1 c1 c2 c2 c3 c3
input_2 c1 c2 c2 c3 c3 c1

labels 1 0 1 0 1 0

Table 3.4: Example of what the balanced inputs look like.

3.6.7 Implementing EarlyStopping

We also implemented a callback function for the model, called EarlyStopping.
This is a callback function gotten from the Tensorflow API which allows
the model to stop training by itself after X epochs without improvement.
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X is the patience value parameter for EarlyStopping, while the monitor
parameter determines what metric the model should use to check for im-
provement between epochs. We used a patience value of 15, and val_loss
(validation loss) as the monitored value.

3.6.8 Discovering and Fixing Bugs

When we tried to conduct an experiment using the entire dataset, we
encountered some issues. Some of the chunks were smaller than they
should be, suggesting there was missing data. We had originally assumed
that all participants had data from 1. November - 31. March. However,
upon closer inspection of the original steps.json data files, we realised
that there were actually some discrepancies in the datasets between the
different participants. Some either began at a later date, ended at an earlier
date or both. This naturally leads to issues in the data processing since we
originally assumed they were all sharing the same time frame.

To solve this issue, we envisioned three possible solutions:

1. Use only data from the participants with complete datasets (1.
November - 31. March, amounting to 21 whole weeks). Only 6
participants had complete datasets.

2. Use only the data from a period that is included in every dataset
(e.g. take the entire period of the smallest dataset, and the equivalent
period from each other dataset). This would amount to 14 whole
weeks of data for each participant.

3. Exclude the participants with the least amount of data. Participants
10 and 11 had just over 14 weeks, whereas every other participant had
at least 18 weeks worth. This option would result in 14 participants
with 18 weeks of data from each.

Optimally we would run tests using each of the proposed solutions in
order to determine what was the best approach. However, due to time
constraints, we would instead choose one out of the three, so we could
prioritise testing and improving the model. In the end, we chose option 2,
as this would allow us to experiment with all participants at once without
any issues. We prioritised more participants over more data as this would
give us more variety in the data, and we believed this would provide the
best results.

3.6.9 Summary - Phase One

In this experimentation phase, we have mainly been improving the method
in which we conduct experiments. We have improved efficiency in
how to modify the quantity of data to be used with each experiment,
as well as found what we believe to be the most optimal (balanced)
method of arranging inputs for training the model. The actual model
itself has not seen much progress. However, the improvements made
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to the experimentation process itself will likely result in higher quality
experiments going forward.

3.7 Heart Rate

At this point, due to the lack of results thus far, we decided to switch from
using step data to using heart rate data instead.

3.7.1 Data Processing

The Fitbit dataset for heart rate is found in a file called heart_rate.json,
as seen in table 3.2.4. Heart rate is also a time series with values recorded
roughly every 5 seconds. The recorded values are a timestamp, beats-per-
minute (bpm) and a confidence value representing the error margin for the
bpm value. The timestamp is on the format "yyyy-mm-dd HH:MM:SS",
whereas bpm and confidence values are integers.

Again, like just like we saw with steps in section 3.5.1, heart rate
data is also inconsistent. However, with heart rate, it is not just an
occasional missing value. Instead, the timestamps would shift by 1 second
occasionally. For example if the previous timestamp was "2019-11-01
00:00:05", the next might be "2019-11-01 00:00:11" rather than the expected
"2019-11-01 00:00:10".

To solve this and make the data consistent, we processed the data with
the following steps:

1. Loaded the data into a pandas dataframe.

2. Resampled the dataset to a 1-second frequency using the pandas
resample() function. By doing this, there was no longer an issue of
inconsistency in timestamps.

3. Used linear interpolation to fill in bpm values for the newly created
timestamps.

4. Round off the bpm values and cast them to int (the pandas
interpolate() function creates float-values).

5. Resample the dataset back to its original 5-second frequency. The
dataset will now be consistent with a bpm value every 5 seconds.

6. Remove the confidence and timestamp columns, leaving only bpm.

We decided to fill values by linear interpolation as we believe this will
result in a reasonable and realistic dataset. Filling with 0 as we did for
steps would naturally not work here as a living human’s heart rate should
never be 0.

Finally, due to the heart rate dataset being much larger than the steps
dataset, we decided to have each chunk contain one day of data, rather
than one week as we did with steps. This is so the input shape for the
model would not be too large.
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3.7.2 Additional Features

Initially, beats-per-minute (bpm) was the only feature used. We decided
to expand this by adding day-of-the-week features, encoded as one-hot
vectors [84]. To implement this, we added a few steps to our data
processing. These steps would take place between step 5 and 6 from the
process detailed in section 3.7.1:

1. Create a column with "weekday" values, which are integers between
1-7 (where 1 is Monday and 7 is Sunday), corresponding to the day
of the week for a given timestamp.

2. Create a column for each day: mon, tue, wed, thu, fri, sat, sun.

3. Fill values in the newly created columns. These values will be 1 if that
is the day corresponding to the weekday value created in step 1, or 0
otherwise.

4. Remove the weekday column.

Table 3.5 is an example of how each row would look like after being
processed with these new steps included.

bpm mon tue wed thu fri sat sun

68 0 1 0 0 0 0 0

Table 3.5: Example row from a processed heart rate dataset.

With these one-hot encoded day-of-the-week features, the model would
be able to see correlations in heart rate patterns between different days of
the week as well, hopefully allowing it to learn more about the dataset.

3.7.3 A New Environment

Due to the heart rate dataset being much larger than steps with having
one value every 5 seconds as opposed to one value every minute,
we encountered some challenges. The first was the model not being
compatible due to the larger dataset, which was solved by simply changing
the input shape to match the new size. The other challenge was hardware.
Up until this point, we had been working locally on a private computer
which did not have the resources to handle heavier computations. For that
reason, we transitioned to working remotely on Simula’s supercomputer
"ex3" instead [85].

3.8 Experimentation - Phase Two

The following experiments were conducted using 16 participants, 7 weeks
of training data and 3 weeks of testing data unless stated otherwise. The
experiments also made use of the EarlyStopping function with a patience
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value of 10, monitoring loss. This function will cause the model to stop
its training if it goes on for 10 epochs without improvements in the loss
value. All experiments used the same layers as shown in figure 3.2 unless
otherwise stated.

3.8.1 Experiment 1: kernel_size=64.

Using the base model with the kernel size parameter to the Conv1D layers
set to 64.

Training
Loss

Training
Accuracy

Test
Score

0.6932 0.4770 0.5000

Table 3.6: Results for experiment 1. Test score is an example output value,
as all tests output the same, or an extremely similar score.

Both the loss value and accuracy stabilised within the first epoch and
remained unchanged until the training finished. The final epoch had a
loss of 0.6932 and accuracy of 0.4770. All tests resulted in the exact same
similarity score of 0.5000136. We concluded that the model is learning very
little, if anything.

3.8.2 Experiment 2: kernel_size=128.

Mostly the same as experiment 1, with the difference being a larger kernel
size parameter for the Conv1D layers. The results for this experiment can be
seen in table 3.7.

Training
Loss

Training
Accuracy

Test
Score

0.6932 0.4923 0.5001

Table 3.7: Results for experiment 2. Test score is an example output value,
as all tests output the same, or an extremely similar score.

Just like with the previous experiment, both loss and accuracy stabilised
in the first epoch and barely changed until completion. The resulting loss,
accuracy and test score was also similar. The similarity score produced
when testing was identical for every test case here as well, so we once
again conclude the model is not learning. We also conclude that kernel
size seemingly has little to no impact on the model’s performance.

3.8.3 Experiment 3: No Flatten and MaxPooling1D Layers.

This experiments has both MaxPooling1D layers and the Flatten layer
disabled.
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Epoch
Training

Loss
Training
Accuracy

Test
Score

46 0.6552 0.6431 N/A
56 0.6980 0.5000 0.5502*

Table 3.8: Results for experiment 3. Best result is indicated in bold. Test
score has been marked with * because the output had an unexpected format
of a list, rather than a single value. The displayed value in the table is the
average of the values in the list.

Here we actually saw a development in both loss and accuracy,
where they gradually improved over the first 46 epochs before getting
significantly worse again in the last 10 epochs. The epoch that had the best
results, before the decline, can be seen in table 3.8 marked in bold. We were
not able to test this epoch’s model as it would be overwritten by subsequent
epochs in the current implementation. Because of this, we realised we
would need a method to test earlier iterations of a model, considering the
last epoch was far from the best one in this particular case.

Since there was a development in the training process, we concluded
that the model is actually learning something. It would be difficult to
determine how well this model performs as we were unable to test the best
iteration. However, one strange occurrence in this experiment is that the
output format of the model has changed. When obtaining a similarity score
between two chunks in testing, we would now get a list of scores rather
than a single score like we expected. We assume this is due to disabling the
Flatten layer, because Flatten changes the output shape. Flatten works
by taking in a shape of N dimensions and transforming this to a single
dimension output [86]. For example:

[[[ 1, 2, 3],
[ 4, 5, 6]],

[[ 7, 8, 9],
[10, 11, 12]]]

will be transformed to

[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]

when sent through a Flatten layer. In the next experiment, we will verify
our assumption that removing the Flatten layer was the cause for the
strange output format.

3.8.4 Experiment 4: No Flatten Layer.

This experiment uses the base model with the Flatten layer disabled, in
order to verify the assumption made in the previous experiment: that the
strange outputs are caused by the Flatten layer being disabled.

32



Epoch
Training

Loss
Training
Accuracy

Test
Score

28 0.6556 0.6568 N/A
38 0.6938 0.5000 0.5182*

Table 3.9: Results for experiment 4. Best result is indicated in bold. Test
score has been marked with * because the output had an unexpected format
of a list, rather than a single value. The displayed value in the table is the
average of the values in the list.

The results in this experiment are very similar to the previous one,
and the outputs is still a list of scores rather than a single value. This
confirms our assumption that the lack of a Flatten layer is responsible
for the strange output format. By comparing the results in table 3.8
(experiment 3) to those in table 3.9 (experiment 4), we also see that turning
the MaxPooling1D layers back on had little effect on the overall results for
this model.

3.8.5 Summary - Phase Two

In this experimentation phase, we have established the baseline results
for the base (i.e. unchanged) model, before modifying it and assessing
what effect these modifications had. We have explored how flattening
the feature maps from the convolutional layers changes the behaviour
the Dense layer, seeing as the model actually started learning when we
removed the Flatten layer. Unfortunately, this modification also changes
the shape of the final output for the model, making it difficult to assess the
actual final similarity score, so we will have to reinsert the Flatten layer to
solve this. However, we may have gotten a clue as to why the model was
performing poorly since the Dense layer seemingly performed much better
with a non-flattened input.

3.9 Improvements

In order to gain better insight into the model’s performance, we added
validation data to the inputs when training the model. The training dataset
was split in two, training and validation, where 70% was training data and
30% was validation data. We also implemented plotting of learning curves
to make it easier to see how well the model performed during training,
as well as how it developed throughout the training process. Lastly, we
implemented another callback function from the Tensorflow API called
SaveCheckpoint. This function saves the best iteration of the model from
the training process to a file, so you can load and use it later. A value to
be monitored (loss or accuracy for example) is supplied as an argument to
the callback function, and this value is used as the criteria by the function
to assess which epoch produced the best model. We have chosen to use
val_loss (validation loss) as the criteria for what is considered the best
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model. The epoch that achieves the lowest value for val_loss will be
considered the best result, and therefore saved by the SaveCheckpoint
function.

We believe it would be a good idea to test both the model produced
by the best epoch (as saved by the SaveCheckpoint function), and the
final epoch before training ends. This would allow us to compare the
results between the two, and confirm whether the presumed "best" version
actually achieved the best results.

3.10 Experimentation - Phase Three

These experiments were conducted after the improvements above, and
will therefore include plotted learning curves for additional insight.
The experiments themselves will be mainly focused on testing different
compositions of layers in order to see if the model can be improved.

3.10.1 Experiment 5: Base Model.

This experiment uses the model in its initial state after being converted
to 1D as seen in figure 3.2. The results can be seen in table 3.10, and the
learning curve in figure 3.3.

Figure 3.3: Learning curve for experiment 5.
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Epoch
Training

Loss
Training
Accuracy

Validation
Loss

Validation
Accuracy

Test
Accuracy

1 0.6930 0.4913 0.6931 0.5011 N/A

Table 3.10: Results for experiment 5. Only shows 1 epoch as there was very
minimal difference between epochs overall.

As seen in figure 3.3, the base model is not learning at all. The curve
stabilises within the first epoch and barely changes afterwards. The "Test
Accuracy" column in table 3.10 has been marked "N/A" because every
single prediction using the model on test data, returns the exact same
similarity score of 0.50000334. Thus, we can not determine accuracy as
any tests passed would have been due to sheer luck. Given the fact that
the training dataset was balanced with an equal number of true and false
comparisons, it is reasonable to believe that the model is guessing purely
based on probability rather than actually predicting similarity. We are not
interested in test results on whether the model guessed correctly by pure
chance. We will therefore have to experiment with the layers in the model
to see if we can get it to learn.

3.10.2 Experiment 6: Replication of Experiment 4.

This is experiment 4 replicated after the improvements mentioned on page
33 in order to see its learning curve, as well as be able to test the best epoch.
The results can be seen in table 3.11 and the learning curve in figure 3.4. We
believe there was value in replicating this experiment after improvements
in order to see the learning curve as well as being able to test the best epoch
since there was a large discrepancy between the performance of the best
epoch and the last epoch for this experiment. As with experiment 3, four
Conv1D layers, two MaxPooling1D layers and one Dense layer is used, in the
same order as in figure 3.2. The Flatten layer is not used.
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Figure 3.4: Learning curve for experiment 6.

Epoch
Training

Loss
Training
Accuracy

Validation
Loss

Validation
Accuracy

Test
Accuracy

18 0.6729 0.6319 0.6694 0.6422 N/A
33 0.6916 0.6011 0.6910 0.6480 N/A

Table 3.11: Results for experiment 6. Best result is indicated in bold.

Test accuracy has not been computed as it is difficult to interpret the
output when the Flatten layer was removed, as noted in experiments 3
and 4. It is therefore marked as "N/A" in table 3.11. If we compare the
learning curves in figure 3.4 (this experiment) and 3.3 (experiment 5: base
model), we see that by removing the Flatten layer, the model is actually
learning something. This suggests that flattening the output from the
Conv1D layers somehow interferes with the Dense layer’s ability to learn.
We will therefore attempt to move the Flatten layer, so it comes after Dense
for our next experiment, to see if this affects the results.

3.10.3 Experiment 7: Flatten After Dense.

In this experiment, we tried a different approach where we rearranged the
order of the Flatten and Dense layers. The Flatten layer would now come
last, after the Dense layer. The rest of the layers are as they appear in figure
3.2. The results can be seen in table 3.12 and the learning curve in figure
3.5.
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Figure 3.5: Learning curve for experiment 7.

Epoch
Training

Loss
Training
Accuracy

Validation
Loss

Validation
Accuracy

Test
Accuracy

2 0.5073 0.7767 0.5889 0.6943
0.7743

(223/288)

12 0.2062 0.9471 1.2694 0.6476
0.7674

(221/288)

Table 3.12: Results for experiment 7. Best result is indicated in bold. Test
Accuracy shows the number of tests passed in parenthesis.

The model in this experiment has produced the best results so far,
with the lowest loss values, highest accuracy and as many as 77.4% of
tests passed for the "best" version in table 3.12. However, as the learning
curve in figure 3.5 shows, the loss and validation loss diverge almost
immediately with validation loss continuously rising. This suggests the
model is overfitting significantly, which is a potential for improvement. We
believe the great increase in performance can be attributed to the Dense
layer now being able to learn from the convolutions produced by the
preceding Conv1D layer without them being flattened first. We have to keep
in mind that this experiment was conducted on a relatively small part of the
available dataset, so the natural next step will be to experiment using this
same model with more data. If this were to be equally successful, it would
be worthwhile looking into ways of solving the issue of overfitting.
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3.10.4 Experiment 8: Flatten After Dense - More Data.

This experiment is a replication of experiment 7 with additional data being
used both for training and testing. For this experiment, we used 50 days of
heart rate data for training, and 20 days for testing.

Figure 3.6: Learning curve for experiment 8.

Epoch
Training

Loss
Training
Accuracy

Validation
Loss

Validation
Accuracy

Test
Accuracy

1 0.5519 0.7209 0.9548 0.5288
0.7052

(9027/12800)

11 0.1611 0.9431 3.5154 0.5372
0.6651

(8513/12800)

Table 3.13: Results for experiment 8. Best result is indicated in bold. Test
Accuracy shows the number of tests passed in parenthesis.

As we can see from the learning curve in figure 3.6, the issue with
overfitting has increased significantly from the previous experiment, with
validation loss trending upwards immediately after the first epoch. Despite
this, it still performs relatively well in testing, with 70.5% of tests passing
("best" version from table 3.13. From this, we can infer that overfitting gets
worse as the dataset increases in size, and the performance has likely been
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impacted because of this. However, it still remains as the best model we
have produced thus far, considering the test results.

It would be a good idea for a future experiment to try methods for
solving the overfitting problem such as adding Dropout layers, and test
if this improves performance.

3.10.5 Summary - Phase Three

In this experimentation phase, we retested some of the experiments from
the previous phase in order to get their learning curves. As we mentioned
in the summary for phase two (Section 3.8.5), the Flatten layer seems
to cause problems for the following Dense layer, resulting in the model
not learning. When removing the Flatten layer, the output of the model
was no longer on the expected format, so this did not solve the problem.
In phase three we built upon these discoveries by trying to place the
Flatten layer after the Dense layer instead, which resulted in a significant
improvement in the model’s performance, with testing accuracy reaching
as high as 77.4%. This iteration did, however, have some significant
overfitting issues as seen in the learning curve in figure 3.5.

3.11 New Model

We decided to get inspiration by implementing and testing a new Siamese
architecture. This architecture was first proposed in a paper by Koch et al.
[62] and later implemented by Harshall Lamba [63]. This model’s inner
architecture of the "Convolutional Neural Network" part of the Siamese
architecture illustrated in figure 3.1, can be seen in figure 3.7.

The difference between this model and the previous one (section 3.5.2)
is the inner architecture (layer composition) of the "Convolutional Neural
Network" part of figure 3.1. The higher level Siamese architecture is
functionally the same for both. The main difference between the inner
architectures is that this version has three MaxPooling1D layers which are all
positioned between two Conv1D layers, whereas the previous architecture
had two MaxPooling1D layers which were positioned after every other
Conv1D layer. In addition to this, the new model had a significantly
higher value supplied as the parameter for determining the dimensionality
of the output shape from the Dense layer. The new model also had
its own custom functions for the layer arguments: kernel_initializer,
bias_initializer and kernel_regularizer.

We will be focusing on the implementation of this model by Harshall
Lamba [63]. This architecture was designed to recognise the similarity
between images of physical signatures, in an effort to distinguish whether
a signature is authentic or not. In other words, just as with the architecture
by Shubham Panchal [57], this new architecture was also designed to take
images as input, so we would need to modify it before we can use it for
Fitbit data. The modification was done in the same way as for the previous
architecture we used, in that we changed all Conv and MaxPooling layers
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from 2D to their 1D counterparts, as well as modifying parameters where
necessary. We also had to reduce the size of the output dimensionality
for each of the Conv1D layers and the Dense by half in order to reduce
the memory usage of the model, because our input shape of (17280, 8)
was so large it would lead to an "Out of Memory" exception otherwise.
After switching the layers to 1D and reducing the output dimensionality of
layers, the new model architecture was ready to train with Fitbit data.

Conv2D

MaxPooling2D
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Conv2D

Conv2D

Flatten
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MaxPooling2D
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MaxPooling1D

Figure 3.7: Comparison of the Convolutional Neural Network of the new
model before and after our modification. This is the inner architecture
of the box labeled "Convolutional Neural Network" in the Siamese
architecture in figure 3.1.

3.12 Experimentation - Phase Four

The following experiments were conducted using 16 participants, 7 weeks
of training data and 3 weeks of testing data unless stated otherwise. The
experiments will be making use of the new model architecture described in
section 3.11.
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3.12.1 Experiment 9: New Base Model.

This experiment uses the new model exactly as it is described in sec-
tion 3.11. The results can be found in table 3.14 and the learning curve
in figure 3.8.

Figure 3.8: Learning curve for experiment 9.

Epoch
Training

Loss
Training
Accuracy

Validation
Loss

Validation
Accuracy

Test
Accuracy

14 0.3665 0.9854 1.0976 0.6561
0.7292

(211/288)

24 0.1288 1.0 1.5658 0.5732
0.7292

(210/288)

Table 3.14: Results for experiment 9. Best result is indicated in bold. Test
Accuracy shows the number of tests passed in parenthesis.

We can see from the results in table 3.14 that this new model, in its initial
state, is already performing much better than the previous architecture’s
base model test in experiment 5. This is also reflected in the learning curve
in figure 3.8. In fact, this model is not far behind our current best results in
experiment 7.

Another observation to note here is that the loss value began at an in-
credible 40+, way higher than what we have seen in previous experiments,
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before quickly dropping down to normal levels and stabilising. We believe
this is likely due to the custom initialiser functions for kernel and bias that
are supplied to the layers of this model. We will test this model once more
with a larger dataset in the next experiment, to see if it works just as well
with more data.

3.12.2 Experiment 10: New Base Model - More Data.

This experiment is the same as experiment 9, but with 50 days of training
data and 20 days of test data used instead.

Figure 3.9: Learning curve for experiment 10.

Epoch
Training

Loss
Training
Accuracy

Validation
Loss

Validation
Accuracy

Test
Accuracy

13 0.3541 0.9036 0.6825 0.6876
0.6836

(8750/12800)

23 0.1346 0.9832 1.6865 0.5965
0.5917

(7574/12800)

Table 3.15: Results for experiment 10. Best result is indicated in bold. Test
Accuracy shows the number of tests passed in parenthesis.

This experiment achieved similar results, if not slightly worse results
than experiment 9. In loss, validation loss and validation accuracy, this
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experiment is superior. However, we believe it is more appropriate to judge
its performance in terms of actual accuracy by looking at the number of
tests it passed, in which experiment 9 performed better. From this, we can
infer that the model starts struggling to differentiate between participants
when more data is involved, as experiments 9 and 10 are the same except
for the different sizes in data used.

3.12.3 Summary - Phase Four

In this experimentation phase, we have implemented and tested a new
model architecture. This new model performed significantly better than
the initial version of the previous model, seen in experiment 5 (table 3.10).
However, it did not perform quite as well as our improved version of the
initial model from experiment 7 and 8. The new model also uses Flatten
before Dense, so it would have been useful to test whether this model could
be improved as well by moving the Flatten, but we were not able to do this
due to time constraints.

3.13 Discussion

When implementing the Siamese neural network, we have been using
steps and heart rate data for reidentification. We used steps initially due
to being easier to implement. However, as we saw in phase one of our
experimentation, step data alone was not enough to be able to distinguish
between and reidentify participants in the dataset. We believe the reason
for this is due to the nature of step data. As a person will not be moving
around all the time, many values in the dataset will be 0, as no steps are
taken in a given minute. This means the data from different participants
will be less unique as they all have a large number of 0-values.

Heart rate, on the other hand, will realistically never be 0 as long as it is
worn by a living human. Thus, the heart rate dataset will not have the same
issue as steps. Because of this, heart rate data is likely to be more unique
for each participant, making it possible for the Siamese neural network to
differentiate between them.

Although we only made use of steps and heart rate, other fitness data
could be useful for reidentification as well. Sleep data, for example, could
be an interesting area to find patterns to use for distinguishing between
people, as this is (generally) a daily occurrence for everyone and may differ
in length, quality and composition between individuals. Exercise data
could be interesting as well, though this data is highly irregular because
people do not necessarily exercise at the same time, for the same amount
of time per exercise, and they might not do the same activities in the
exercise. Thus, it could prove challenging to make comparisons between
participants in a dataset using exercise data only.

As we have discussed, multiple datasets could be useful for reidentific-
ation purposes, and we believe there is merit to combining these as well. In
theory, the more data (and different kinds of data) you have for each par-

43



ticipant, the more unique their individual daily patterns will be. In turn,
this would make reidentification easier. We would have liked to test this
theory, but due to time constraints, we will be leaving this for future work.

One of the limitations for this thesis, as mentioned in scope and
limitations (section 1.3), is that the dataset only has 16 participants.
Due to the relatively small sample size, there is no guarantee that our
implementation will achieve similar results on a larger dataset involving
100+ people. In a larger sample size, there would be more cases of
people with similar patterns or heart rate averages, which would make it
more challenging for our Siamese neural network to reidentify individuals
successfully. In the PMData dataset, we did not have many issues with this
as the dataset had much variety in that the participants were of different
demographics, having different fitness levels etc. For these reasons, we can
not say that our implementation is general enough to be applied to datasets
of varying sizes, as we have only tested with PMData. Testing with larger
datasets would be a natural course of action in future work.

Another limitation is that we have only tested with data collected from
Fitbit devices. Without testing with data from other devices, we can not
guarantee that our implementation will achieve similar results. However,
we believe it should work similarly with data from other devices, as long
as the following conditions are true:

1. The data contents is the same and on a similar format, allowing for
the processed result to match the format of the processed Fitbit data.

2. The data collection accuracy of other devices to be used are similar
to the accuracy of the Fitbit Versa 2, which we used. Accuracy can
affect data quality, and the data quality could affect our model’s
performance.

3.14 Summary

In this chapter, we have implemented a Siamese neural network architec-
ture that is capable of reidentifying individuals in the PMData dataset with
a 77.4% accuracy. We achieved this by first implementing an existing solu-
tion and iterating over this implementation, running experiments and mak-
ing modifications and improvements based on the results. We have also
tested this implementation with both step data and heart rate data, with
heart rate proving to be more effective for reidentification.

Over the course of the experimentation process, in addition to experi-
menting with and improving our implementation, we have also improved
our experimentation methods themselves by adding elements such as the
SaveCheckpoint callback function, allowing us to test the model produced
by both the best and last epochs and compare them, as well as implement-
ing learning curve plotting for a better overview of results.

We have also discussed our findings and noted some of the limitations
for our thesis, which ultimately lead to not being able to conclude that our
implementation is general enough to work for larger datasets as we have
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not tested this. However, it should be able to work reasonably well with
data collected from devices other than Fitbit, given that the data is on a
similar format.
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Chapter 4

Conclusion

4.1 Summary

We live in a world where enormous amounts of data are collected and
stored each day. This data also includes a lot of personal data, which
is a cause for concern in regards to privacy rights. To alleviate these
concerns, lawmakers worldwide have begun to strengthen privacy laws
by restricting what data can be legally collected and stored and putting
an emphasis on data subject rights. The GDPR [1], for example, makes it
harder to share or sell personal data without each person’s explicit consent,
unless the data is anonymised.

Deep learning is being widely researched and applied in more and
more scenarios with each passing day. Data analysis is an area which has
especially seen frequent use of deep learning algorithms, as they allow for
increased learning and value obtained from data. This naturally applies to
personal data as well, which once again raises concerns regarding privacy.
We have seen other works which call standard anonymisation processes
into question as deep learning has proven capable of reidentifying
individuals in anonymised datasets.

In this thesis, we have looked at how neural networks can be used
to reidentify individuals in an anonymous dataset. We explored this by
implementing a Siamese Neural Network architecture which takes two
chunks of data, obtain their features by using deep learning, and compares
these features to compute a similarity score. This score is then used to
determine whether these chunks of data come from the same person or
not. By comparing data and producing similarity scores in this way, our
implementation is capable of identifying which chunks of data in a dataset
belong to a given person. We have tested and improved this model over
several iterations on the Fitbit dataset available in PMData, ending up with
a version that achieved an accuracy of up to 77.4%.

In other words, we can reidentify a person in an anonymised dataset
with reasonable accuracy, as long as we possess a small portion of identified
data for that person beforehand. The Siamese neural network works by
comparing data and determining whether they originate from the same
person or not. Therefore, if we are to reidentify someone in an anonymised
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dataset, we need to have one or more chunks of data from that person,
which we can use with the Siamese neural network to compare to the
chunks in the anonymous dataset, which will allow us to find out which of
the anonymous participants corresponds to person A. As an example, if we
have one or more chunks of data from person A, and we want to identify
which of the anonymous participants in a dataset correspond to person A,
we can use the chunk(s) of data from person A and compare these with
the chunks in the dataset using the Siamese neural network. The resulting
similarity scores will allow us to identify which of the participants in the
dataset corresponds to person A.

4.2 Contributions

As mentioned in section 1.5, we have implemented a solution to the
problem of reidentifying participants in an anonymised dataset. This
solution consists of a Siamese neural network which compares chunks of
data to produce a similarity score, which determines the likelihood of these
chunks of data originating from the same person. Our implementation
achieved an accuracy of up to 77.4% by using heart rate data to distinguish
between and reidentify participants of the dataset. We have also tested
with step data, but this did not achieve any significant results, with only
reaching just over 50% accuracy.

With this, we were able to answer the research questions from our initial
problem statement:

Question 1 Could a chunk (for example a day or a week) of deidentified physical
activity data be considered a biometric identifier?

Our implemented Siamese neural network is capable of distinguishing
between anonymous participants in a dataset by computing the similarities
between their data. It does this by taking two chunks of heart rate data as
input, where a chunk is a day of beats-per-minute (bpm) values. These
chunks are sent through identical neural networks to generate feature
vectors for them. The absolute distance between these feature vectors is
then used to calculate a similarity score, which can be used to determine
how similar these chunks of data are. The hypothesis is that if two chunks
of data compute similar features in the neural networks, the chunks are
likely to belong to the same person due to having similar patterns.

This gives reason to believe that physical activity data can be used as a
biometric identifier, as it can be used to identify a person in an anonymous
dataset. An obvious limitation to this, however, is that humans change
over time, and so does their activity patterns, meaning the Siamese neural
network may not be able to reidentify individuals if the chunks of data
to be compared are far apart in terms of when it was collected. Another
limitation is that you need to already possess one or more chunks of data
from the person you wish to identify, as you need something to compare to
the chunks in the anonymised dataset.
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Question 2 Is it possible to use deep learning in order to reidentify individuals
in a dataset that has been previously anonymised?

As mentioned, our implementation was able to reidentify participants
of a dataset with an accuracy of 77.4%, which proves that this is indeed
possible. It is based on the theory that since humans are habitual creatures,
their behaviour will likely have some sort of pattern, which would be
reflected in their physical activity data. In such a case, one should be able to
distinguish between individuals based on patterns found in their physical
activity data. If these patterns are unique enough, they could be used as a
form of biometric identifier which could allow a deep learning algorithm
to identify an individual based on their physical activity data.

Objective Implement a deep learning neural network architecture to reidentify
individuals in an anonymised fitness dataset.

Our implementation of a Siamese neural network takes two chunks of
data as input, compares these and computes a similarity score based on
the absolute distance between their features. A high similarity score means
the patterns in each chunk is similar and is therefore interpreted as the
two chunks belonging to the same person. With reaching accuracies up
to 77.4% in testing, we can conclude that the implementation is capable of
reasonably reidentifying anonymised data, as long as you have available
data from the person you wish to identify, for comparison. The source code
for this implementation can be found on GitHub here: https://github.com/
Zeykes/Fitbit_Reidentification

4.3 Future Work

As of right now, the implementation achieves its goals to a reasonable
degree on the PMData [15] dataset. We believe our implementation has
the potential to improve even further by experimenting and testing the
following:

• Experiment with other data such as sleep activity, distance travelled,
exercise, or daily active minutes. We have only tested steps and heart
rate, but there are much more data available in a Fitbit data set, or
similar, that could potentially be used for reidentification purposes.
Data from devices other than Fitbit should be tested as well, although
we believe these should achieve similar results as long as the data is
on a format similar to Fitbit.

• Combine data. By aggregating activity data such as steps and heart
rate, and using them together, it would increase the factors that
make up an individual’s activity pattern. This would, in turn, make
these patterns more unique from one individual to another, which
could help the model more accurately distinguish individuals in
cases where several participants are in similar heart rate ranges, for
example.
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• Train and test the model on a larger dataset. The dataset we used,
PMData [15], was limited in terms of diversity due to only involving
16 participants. This means our model has not encountered situations
with the possibility of several participants having similar activity
patterns, which would complicate the reidentification process.

• Test the generality of the implementation. This thesis has only used
a single dataset; however, there are methods to test whether the
implementation is general enough to distinguish between data from
individuals who were not part of the training dataset. One such
method is three-cross validation, where one would split the dataset
into three parts, train the model with one part and test with the other
parts, then rotate. We would recommend splitting the dataset by
participants so that each participant is only found in one of the three
parts. This would test the model’s ability to distinguish between
unknown individuals.

In addition to the points above, we also believe there is room for
improvement in the model itself. In particular, we observed some
overfitting in the later iterations of the model, including the iteration which
achieved the best results. One possible method for solving this is to add
Dropout layers in the model.
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